-
Chris Jewell authored
Consider an SEIR model. For adding $x \geq 0$ S->E event times we have: \begin{equation} S(t+1) &=& S(0) - (N_{se}(t) + x) \geq 0 \\ E(t+1) &=& E(0) + (N_{se}(t) + x) \geq 0 \end{equation} such that $x$ is bounded by $$ x \leq S(0) - N_{se}(t). $$ Similarly for adding $x \geq 0$ E->I event times we have: $$ x \leq E(0) + N_{se}(t) - N_{ei}(t). $$ For deleting $x \geq 0$ S->E event times we have: $$ x \leq E(0) + N_{se}(t) - N_{ei}(t) $$ and for E->I event times we have; $$ x \leq I(0) + N_{ei}(t) - N_{ir}(t). $$
Chris Jewell authoredConsider an SEIR model. For adding $x \geq 0$ S->E event times we have: \begin{equation} S(t+1) &=& S(0) - (N_{se}(t) + x) \geq 0 \\ E(t+1) &=& E(0) + (N_{se}(t) + x) \geq 0 \end{equation} such that $x$ is bounded by $$ x \leq S(0) - N_{se}(t). $$ Similarly for adding $x \geq 0$ E->I event times we have: $$ x \leq E(0) + N_{se}(t) - N_{ei}(t). $$ For deleting $x \geq 0$ S->E event times we have: $$ x \leq E(0) + N_{se}(t) - N_{ei}(t) $$ and for E->I event times we have; $$ x \leq I(0) + N_{ei}(t) - N_{ir}(t). $$
Loading