summary_longformat.py 4.45 KB
Newer Older
Chris Jewell's avatar
Chris Jewell committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""Produces a long-format summary of fitted model results"""

import pickle as pkl
from datetime import date
import numpy as np
import pandas as pd
import xarray

from gemlib.util import compute_state
from covid.model_spec import STOICHIOMETRY
from covid import model_spec
from covid.formats import make_dstl_template


def xarray2summarydf(arr):
    mean = arr.mean(dim="iteration").to_dataset(name="value")
17
18
19
    q = np.arange(start=0.05, stop=1.0, step=0.05)
    quantiles = arr.quantile(q=q, dim="iteration").to_dataset(dim="quantile")
    ds = mean.merge(quantiles).rename_vars({qi: f"{qi:.2f}" for qi in q})
Chris Jewell's avatar
Chris Jewell committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    return ds.to_dataframe().reset_index()


def prevalence(events, popsize):
    prev = compute_state(events.attrs["initial_state"], events, STOICHIOMETRY)
    prev = xarray.DataArray(
        prev.numpy(),
        coords=[
            np.arange(prev.shape[0]),
            events.coords["location"],
            events.coords["time"],
            np.arange(prev.shape[-1]),
        ],
        dims=["iteration", "location", "time", "state"],
    )
    prev_per_1e5 = (
        prev[..., 1:3].sum(dim="state").reset_coords(drop=True)
        / popsize[np.newaxis, :, np.newaxis]
        * 100000
    )
    return xarray2summarydf(prev_per_1e5)


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def weekly_pred_cases_per_100k(prediction, popsize):
    with open(input_file, "rb") as f:
        prediction = pkl.load(f)
    prediction = prediction[..., 2]
    prediction = prediction.reset_coords(drop=True)

    weeks = range(0, prediction.coords["time"].shape[0], 7)[:-1]
    week_incidence = [
        prediction[..., week : (week + 7)].sum(dim="time") for week in weeks
    ]
    week_incidence = xarray.concat(
        week_incidence, dim=prediction.coords["time"][weeks]
    )
    week_incidence = week_incidence.transpose(
        *prediction.dims, transpose_coords=True
    )
    week_incidence = (
        week_incidence / popsize[np.newaxis, :, np.newaxis] * 100000
    )
    return xarray2summarydf(week_incidence)


Chris Jewell's avatar
Chris Jewell committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def summary_longformat(input_files, output_file):
    """Draws together pipeline results into a long format
       csv file.

    :param input_files: a list of filenames [data_pkl,
                                             insample14_pkl,
                                             medium_term_pred_pkl,
                                             ngm_pkl]
    :param output_file: the output CSV with columns `[date,
                        location,value_name,value,q0.025,q0.975]`
    """

    with open(input_files[0], "rb") as f:
        data = pkl.load(f)
    da = data["cases"].rename({"date": "time"})
    df = da.to_dataframe(name="value").reset_index()
    df["value_name"] = "newCasesBySpecimenDate"
    df["0.05"] = np.nan
    df["0.5"] = np.nan
    df["0.95"] = np.nan

    # Insample predictive incidence
    with open(input_files[1], "rb") as f:
        insample = pkl.load(f)
    insample_df = xarray2summarydf(insample[..., 2].reset_coords(drop=True))
    insample_df["value_name"] = "insample14_Cases"
    df = pd.concat([df, insample_df], axis="index")

    # Medium term incidence
    with open(input_files[2], "rb") as f:
        medium_term = pkl.load(f)
    medium_df = xarray2summarydf(medium_term[..., 2].reset_coords(drop=True))
    medium_df["value_name"] = "Cases"
    df = pd.concat([df, medium_df], axis="index")

100
101
102
103
104
    # Weekly incidence per 100k
    weekly_incidence = weekly_pred_cases_per_100k(medium_term, data["N"])
    weekly_incidence["value_name"] = "weekly_cases_per_100k"
    df = pd.concat([df, weekly_incidence], axis="index")

Chris Jewell's avatar
Chris Jewell committed
105
106
    # Medium term prevalence
    prev_df = prevalence(medium_term, data["N"])
107
    prev_df["value_name"] = "prevalence"
Chris Jewell's avatar
Chris Jewell committed
108
109
110
111
112
113
114
115
116
117
118
119
    df = pd.concat([df, prev_df], axis="index")

    # Rt
    with open(input_files[3], "rb") as f:
        ngms = pkl.load(f)
    rt = ngms.sum(dim="dest")
    rt = rt.rename({"src": "location"})
    rt_summary = xarray2summarydf(rt)
    rt_summary["value_name"] = "R"
    rt_summary["time"] = data["date_range"][1]
    df = pd.concat([df, rt_summary], axis="index")

120
121
    quantiles = df.columns[df.columns.str.startswith("0.")]

Chris Jewell's avatar
Chris Jewell committed
122
123
124
    return make_dstl_template(
        group="Lancaster",
        model="SpatialStochasticSEIR",
125
        scenario="Nowcast",
Chris Jewell's avatar
Chris Jewell committed
126
127
128
129
130
131
        creation_date=date.today(),
        version=model_spec.VERSION,
        age_band="All",
        geography=df["location"],
        value_date=df["time"],
        value_type=df["value_name"],
Chris Jewell's avatar
Chris Jewell committed
132
        value=df["value"],
133
        quantiles={q: df[q] for q in quantiles},
134
    ).to_excel(output_file, index=False)