Explore projects
-
Scripts for reproducing the results in our paper on high-dimensional prediction over subgroups.
Updated -
Lisa Koeppel / pymc3SamplerProject
MIT LicenseUpdated -
Claudio Fronterre / covid19uk
MIT LicenseUpdated -
Updated
-
-
Updated
-
Updated
-
Lisa Koeppel / PyMC3_Epi_Extension
MIT LicenseThis project contains the Python code for the PhD thesis titled "Joint epidemic and spatio-temporal approach for modelling disease outbreaks" at Lancaster University supervised by Dr. Chris Jewell and Prof. Dr. Peter Neal.
It provides an extension to the Python probabilistic programming library PyMC3 with a sampler to effectively impute missing infection and removal time data. Furthermore, it integrates a mechanistic modeling approach into an epidemiological modeling setting.
Updated -
Updated
-
-
Updated
-
Updated
-
Updated
-
-
Updated
-
-
Chris Jewell / covid19uk
MIT LicenseArchived 0Updated -
Discrete time Markov epidemic model for COVID-19. This paper describes the MCMC sampler we use to impute censored event times.
Updated -
Updated